LTER research in interior Alaska: key projects that link to reforestation

Current research projects

- Floodplain and upland succession (monitoring since 1960s)
- New site network (set up began in 2010)
- FIA contracting work

Historical datasets

Historical datasets

FLOODPLAIN PRIMARY SUCCESSION

SUCCESSIONAL TRAJECTORY

Historical datasets

- Vegetation (canopy and understory)
- Tree inventory
- Soils, climate, and other important environmental variables
- These datasets gave (and continue to give) us a strong understanding of Tanana River floodplain dynamics, and well as small-scale upland fire dynamics and are called our LTER "core sites".
- Synthesis CJFR volume on these datasets: CJFR 2010 43(1)

Current LTER research focus

New Site Network

- Trying to expand our knowledge and understanding of post-fire dynamics on both a spatial and temporal scale.
- Using sites that were established by LTER scientists for other projects (including LTER core sites) whenever possible.
- Focusing on sites that are currently black spruce or were black spruce prior to burning.

Picea mariana (black spruce) communities

Black spruce exhibits large phenotypic plasticity

Exists in a large range of environmental conditions

Black spruce is fire-adapted

Predominant tree type in interior Alaska

Range distribution and glacial history of *Picea mariana*

Topography gradient

Interior Alaska grouped by community

Site drainage gradient

Elevational gradient

Complex pH Gradient

Objectives

- Select sites that can be monitored long-term (taking into account land ownership, accessibility, previous studies done, etc. etc)
- Understand how representative each of our sites is within:
 - The fire scar
 - The ecoregion
 - The landscape of interior Alaska

Proposed Study Design

Ecoregion	Area (km²)	Permafrost thickness	Permafrost stability	Parent material (bedrock)	Fire regime	Dominant vegetation
The Ray Mtns	51,243	Thin to moderate across most of the region	Generally stable	Metaphorphic Ruby terrane	Occasional	Black spruce woodlands
Yukon-Tanana Uplands	102,496	Thin to moderate, depending on topography	Thin, ice-rich, and warm in valley bottoms and toeslopes.	Metasedimenta ry Yukon- Tanana terrane	Very frequent	Black spruce forests, black spruce woodlands, and black spruce bogs
Tanana- Kuskokwim Lowlands	51,730	Thin	Temperatures are near melting point	Alluvial, Fluvial, and glaciofluvial	Ocassional, depending on site moisture	Boreal black spruce forests, black spruce bogs

We proposed:

- 1) Selecting sites within different age-classes in all ecoregions
- 2) That covered a gradient of site drainage (to account for permafrost, soil texture, and permafrost)

Mean Age when burned

NSN Matrix of Sites

- Young sites were distributed by their fire severity (high, moderate, and low) and site moisture (xeric, subxeric, subxeric/mesic, mesic, mesic/subhygric, subhygric
- Intermediate sites were by landscape position (uplands, lowlands), canopy type (hardwood, mixed and black spruce), and soil type (rocky/sandy, loamy/peaty)
- Mature sites were distributed by site moisture and water flux (no flux, ombitrophic, minerotrophic)

NSN datasets

- 30 young sites (< 30 years), 33 intermediate sites (> 40 < 80 years), and 33 mature sites (> 80 years)
- Tree inventory
- Climate stations in each ecoregion (soil temp, soil moisture, precip, and thaw depth
- Soil descriptions
- Vegetation (composition, shrub density, litterfall, seed traps, dendrometers
- Herbivory (vertebrate, insects)

FIA contracting work (2011-2014)

- Experimental Forest
- Tanana Valley State Forest

FIA of BCEF and CPCRW

FIA of Tanana Valley State Forest

Conclusions

- LTER researchers have been studying reforestion after flooding and fire since the 19060s
- There are many projects at both local and regional scales that are looking at regeneration, tree inventory, vegetation composition, and linking these patterns to environmental and climate variables.
- Visit the LTER website: lter.uaf.edu for more information on datasets, interactive maps of research locations, and publications.